Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol ; 289: 109319, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249304

RESUMO

The prevalence of anthelmintic resistance in the bovine nematode Cooperia oncophora has been well documented globally but lack of efficacy against the more pathogenic nematode species Ostertagia ostertagi is less common. The sensitivity of an O. ostertagi isolate to the benzimidazole class of anthelmintic was investigated using classical parasitological techniques following apparent clinical failure of controlled release fenbendazole capsule administration in first season grazers at pasture. A controlled efficacy test (CET) was conducted in conjunction with sequencing of the ß-tubulin isotype 1 gene of larvae pre- and post-fenbendazole administration. Twelve helminth-naïve calves were infected experimentally with 20,000 third stage larvae; six received oral fenbendazole (7.5 mg/kg bodyweight) 28 days post infection. Total abomasal nematode burdens were compared between treatment and control groups to determine efficacy. Fenbendazole resistance in O. ostertagi was confirmed with a total treatment failure in reducing worm burden: efficacy of 0%. Sequence analysis of the ß-tubulin isotype-1 gene from forty-five infective larvae from both control and treated groups was performed. The three commonest single nucleotide polymorphisms (SNPs) associated with benzimidazole resistance, namely F167Y, E198A and F200Y, were examined. The predominant resistance-associated SNPs were F200Y (78 % control and 79 % treated groups) and F167Y (remaining genotypes) and emphasises the importance of these SNPs in clinical disease in this isolate. The development of diagnostic molecular tools based on a characterised field-derived isolate of benzimidazole-resistant Ostertagia will enable future prevalence surveys to be undertaken to assess the possible risk posed by resistance in this economically important species.


Assuntos
Anti-Helmínticos/farmacologia , Resistência a Medicamentos , Fenbendazol/farmacologia , Ostertagia/efeitos dos fármacos , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Ostertagia/genética , Ostertagíase/parasitologia , Ostertagíase/veterinária , Polimorfismo de Nucleotídeo Único
2.
Expert Rev Anti Infect Ther ; 18(10): 977-985, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32530331

RESUMO

INTRODUCTION: Evidence is emerging of complex interactions occurring between gastrointestinal (GI) parasites of ruminants and the resident gut flora, with likely implications for the pathophysiology of worm infection and disease. Similarly, recent data point toward the occurrence of a GI nematode (GIN)-specific microbiota, with potential roles in worm fundamental physiology and reproduction. Parasite-microbiota relationships might represent potential targets for the development of novel parasiticides. AREAS COVERED: In this article, we review current knowledge of the role(s) that host- and helminth-associated microbiota play in ruminant host-parasite relationships, and outline potential avenues for the control of GIN of farmed ruminants via the manipulation of resident microbial species with putative functions in infection establishment, host-immune modulation, and/or parasite fitness and survival. EXPERT OPINION: In order for this knowledge to be translated into practical applications, we argue that several aspects of the nematode-microbiota cross-talk must be addressed, including (i) the causality of interactions between the parasite, the gut microbiota, and the host immune system, (ii) the modes of action of dietary prebiotics and probiotics, (iii) the mechanisms by which diet supplementation aids the development of resistance/tolerance to GI helminth infections and (iv) the composition of the GIN microbiome and its role(s) in parasite biology and physiology.


Assuntos
Anti-Helmínticos/administração & dosagem , Microbioma Gastrointestinal/fisiologia , Helmintíase Animal/tratamento farmacológico , Animais , Anti-Helmínticos/farmacologia , Desenvolvimento de Medicamentos , Helmintíase Animal/parasitologia , Helmintos , Interações Hospedeiro-Parasita , Prebióticos/administração & dosagem , Probióticos/administração & dosagem , Ruminantes/parasitologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32251964

RESUMO

Benzimidazoles (BZ) have been the anthelmintic of choice for controlling Nematodirus battus infections since their release in the 1950s. Despite heavy reliance on this single anthelmintic drug class, resistance was not identified in this nematode until 2010 (Mitchell et al., 2011). The study aimed to explore the prevalence of BZ-resistance mutations in N. battus from UK sheep flocks using deep amplicon sequencing and pyrosequencing platforms. Based on evidence from other gastrointestinal nematodes, resistance in N. battus is likely to be conferred by single nucleotide polymorphisms (SNP) within the ß-tubulin isotype 1 locus at codons 167, 198 and 200. Pyrosequencing and deep amplicon sequencing assays were designed to identify the F167Y (TTC to TAC), E198A (GAA to GCA) and F200Y (TTC to TAC) SNPs. Nematodirus battus populations from 253 independent farms were analysed by pyrosequencing; 174 farm populations were included in deep amplicon sequencing and 170 were analysed using both technologies. F200Y was the most prevalent SNP identified throughout the UK, in 12-27% of the populations tested depending on assay, at a low overall individual frequency of 2.2 ±â€¯0.6% (mean ±â€¯SEM, based on pyrosequencing results). Four out of the five populations with high frequencies (>20%) of the F200Y mutation were located in NW England. The F167Y SNP was identified, for the first time in this species, in four of the populations tested at a low frequency (1.2% ±â€¯0.01), indicating the early emergence of the mutation. E198A or E198L were not identified in any of the isolates. Results obtained were comparable between both techniques for F200Y (Lins' CCC, rc = 0.96) with discrepancies being limited to populations with low frequencies. The recent emergence of resistance in this species will provide a unique opportunity to study the early stages of anthelmintic resistance within a natural setting and track its progress in the future.


Assuntos
Benzimidazóis/farmacologia , Resistência a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nematodirus/genética , Doenças dos Ovinos/parasitologia , Infecções por Strongylida/veterinária , Animais , Anti-Helmínticos/farmacologia , Fazendas , Fezes/parasitologia , Frequência do Gene , Genótipo , Mutação , Nematodirus/efeitos dos fármacos , Análise de Sequência de DNA , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/epidemiologia , Infecções por Strongylida/tratamento farmacológico , Infecções por Strongylida/epidemiologia , Reino Unido/epidemiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31622822

RESUMO

Recent reports of monepantel (MPTL) resistance in UK field isolates of Teladorsagia circumcincta has highlighted the need for a better understanding of the mechanism of MPTL-resistance in order to preserve its anthelmintic efficacy in this economically important species. Nine discrete populations of T. circumcincta were genotypically characterised; three MPTL-susceptible isolates, three experimentally selected MPTL-resistant strains and three field derived populations. Full-length Tci-mptl-1 gene sequences were generated and comparisons between the MPTL-susceptible isolates, MPTL-resistant strains and one field isolate, showed that different putative MPTL-resistance conferring mutations were present in different resistant isolates. Truncated forms of the Tci-mptl-1 gene were also observed. The genetic variability of individual larvae, within and between populations, was examined using microsatellite analyses at 10 'neutral' loci (presumed to be unaffected by MPTL). Results confirmed that there was little background genetic variation between the populations, global FST <0.038. Polymorphisms present in exons 7 and 8 of Tci-mptl-1 enabled genotyping of individual larvae. A reduction in the number of genotypes was observed in all MPTL-resistant strains compared to the MPTL-susceptible strains that they were derived from, suggesting there was purifying selection at Tci-mptl-1 as a result of MPTL-treatment. The potential link between benzimidazole (BZ)-resistance and MPTL-resistance was examined by screening individual larvae for the presence of three SNPs associated with BZ-resistance in the ß-tubulin isotype-1 gene. The majority of larvae were BZ-susceptible homozygotes at positions 167 and 198. Increased heterozygosity at position 200 was observed in the MPTL-resistant strains compared to their respective MPTL-susceptible population. There was no decrease in the occurrence of BZ-resistant genotypes in larvae from each population. These differences, in light of the purifying selection at this locus in all MPTL-resistant isolates, suggests that Tci-mptl-1 confers MPTL-resistance in T. circumcincta, as in Haemonchus contortus, but that different mutations in Tci-mptl-1 can confer resistance in different populations.


Assuntos
Aminoacetonitrila/análogos & derivados , Anti-Helmínticos/farmacologia , Resistência a Medicamentos/genética , Mutação com Perda de Função/fisiologia , Trichostrongyloidea/efeitos dos fármacos , Aminoacetonitrila/farmacologia , Animais , DNA de Helmintos/química , DNA de Helmintos/isolamento & purificação , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Masculino , Repetições de Microssatélites , Escócia , Alinhamento de Sequência , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia , Trichostrongyloidea/classificação , Trichostrongyloidea/genética , Tricostrongiloidíase/tratamento farmacológico , Tricostrongiloidíase/parasitologia , Tricostrongiloidíase/veterinária , Reino Unido
5.
ISME J ; 13(11): 2664-2680, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31239540

RESUMO

The relationship between bacterial communities and their host is being extensively investigated for the potential to improve the host's health. Little is known about the interplay between the microbiota of parasites and the health of the infected host. Using nematode co-infection of lambs as a proof-of-concept model, the aim of this study was to characterise the microbiomes of nematodes and that of their host, enabling identification of candidate nematode-specific microbiota member(s) that could be exploited as drug development tools or for targeted therapy. Deep sequencing techniques were used to elucidate the microbiomes of different life stages of two parasitic nematodes of ruminants, Haemonchus contortus and Teladorsagia circumcincta, as well as that of the co-infected ovine hosts, pre- and post infection. Bioinformatic analyses demonstrated significant differences between the composition of the nematode and ovine microbiomes. The two nematode species also differed significantly. The data indicated a shift in the constitution of the larval nematode microbiome after exposure to the ovine microbiome, and in the ovine intestinal microbial community over time as a result of helminth co-infection. Several bacterial species were identified in nematodes that were absent from their surrounding abomasal environment, the most significant of which included Escherichia coli/Shigella. The ability to purposefully infect nematode species with engineered E. coli was demonstrated in vitro, validating the concept of using this bacterium as a nematode-specific drug development tool and/or drug delivery vehicle. To our knowledge, this is the first description of the concept of exploiting a parasite's microbiome for drug development and treatment purposes.


Assuntos
Haemonchus/microbiologia , Microbiota , Nematoides/microbiologia , Infecções por Nematoides/parasitologia , Doenças dos Ovinos/parasitologia , Abomaso/microbiologia , Animais , Bactérias/classificação , Biodiversidade , Modelos Animais de Doenças , Escherichia coli/genética , Engenharia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Infecções por Nematoides/terapia , Infecções por Nematoides/veterinária , Ovinos , Doenças dos Ovinos/terapia
6.
Vet Parasitol ; 270: 1-6, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31213235

RESUMO

In 2016 suspected reduced ivermectin (IVM) efficacy in Oesophagostomum species in pigs was reported in England. Following this initial report, APHA raised awareness amongst private pig veterinary practitioners of the need to monitor the efficacy of the worm control on pig units. In 2017 another veterinary practitioner highlighted a potential in-field lack of IVM efficacy in treating Oesophagostomum species in sows on another breeder-finisher unit. In this trial, the efficacy of IVM against Oesophagostomum species worms has been investigated to determine whether suspected reduced efficacy (52% reduction in mean faecal egg count 14 days post ivermectin administration) on a mixed indoor and outdoor breeder-finisher pig farm in England reflected true IVM resistance under controlled experimental conditions. On days 0 and 40 of the trial, twenty helminth-naive pigs were artificially infected per os with 5000 Oesophagostomum L3 obtained from the farm under investigation. The pigs were allocated to treatment or control groups (n = 10 per group). Treatment group pigs received IVM (0.3 mg kg body weight) by sub-cutaneous injection as per manufacturer's instructions on day 44. Control group animals were left untreated. Faecal worm egg counts were monitored throughout the trial from day 15 post infection to determine time to patency. On day 50 all pigs were euthanased to assess the worm burdens. Resistance to IVM was confirmed in Oesophagostomum dentatum based on the results of a faecal egg count reduction test (FECRT) and a controlled efficacy test (CET). Efficacy based on mean reduction in faecal egg count of IVM-treated pigs compared to untreated control pigs was 86%. Mean reduction in IVM-treated pig worm burdens was 5% against an adult worm population and 94% against an L3/L4 population. The apparent discrepancy between FECRT and CET efficacy results appears to be due to egg development and/or oviposition suppression in IVM-treated female worms. The detection of IVM resistance in Oesophagostomum species worms for the first time in UK pigs is particularly important considering the global situation where resistance to pyrantel, levamisole and benzimidazole anthelmintics in Oesophagostomum species in pigs have already been reported. The results also provide an opportunity to discuss the wider issue of anthelmintic usage and efficacy on pig farms and highlight the need for wider surveillance for the occurrence of anthelmintic resistance in pigs.


Assuntos
Resistência a Medicamentos , Ivermectina/farmacologia , Esofagostomíase/veterinária , Oesophagostomum/efeitos dos fármacos , Doenças dos Suínos/parasitologia , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/farmacologia , Inglaterra , Fezes/parasitologia , Ivermectina/administração & dosagem , Esofagostomíase/tratamento farmacológico , Esofagostomíase/parasitologia , Contagem de Ovos de Parasitas , Suínos , Doenças dos Suínos/tratamento farmacológico
7.
Int J Parasitol ; 49(1): 13-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471287

RESUMO

Parasitic gastrointestinal nematodes contribute to significant human morbidity and cause billions of dollars per year in lost agricultural production. Control is dependent on the use of anthelmintic drugs which, in the case of livestock parasites, is severely compromised by the widespread development of drug resistance. There are now concerns regarding the emergence of anthelmintic resistance in parasitic nematodes of humans in response to the selection pressure resulting from mass drug administration programs. Consequently, there is an urgent need for sensitive, scalable and accurate diagnostic tools to detect the emergence of anthelmintic resistance. Detecting and measuring the frequency of resistance-associated mutations in parasite populations has the potential to provide sensitive and quantitative assessment of resistance emergence from an early stage. Here, we describe the development and validation of deep amplicon sequencing as a powerful new approach to detect and quantify the frequency of single nucleotide polymorphisms associated with benzimidazole resistance. We have used parasite communities in sheep to undertake a proof-of-concept study of this approach. Sheep provide an excellent host system, as there are multiple co-infecting trichostrongylid nematode species, each likely with a varying prevalence of benzimidazole resistance. We demonstrate that the approach provides an accurate measure of resistance allele frequencies, and can reliably detect resistance alleles down to a frequency of 0.1%, making it particularly valuable for screening mutations in the early stages of resistance. We illustrate the power of the technique by screening UK sheep flocks for benzimidazole resistance-associated single nucleotide polymorphisms at three different codons of the ß-tubulin gene in seven different parasite species from 164 populations (95 from ewes and 69 from lambs) in a single MiSeq sequencing run. This approach provides a powerful new tool to screen for the emergence of anthelmintic resistance mutations in parasitic nematode populations of both animals and humans.


Assuntos
Anti-Helmínticos/farmacologia , Resistência a Medicamentos , Técnicas de Genotipagem/métodos , Nematoides/efeitos dos fármacos , Parasitologia/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Animais , Benzimidazóis , Frequência do Gene , Genótipo , Humanos , Nematoides/genética , Nematoides/isolamento & purificação , Infecções por Nematoides/parasitologia , Infecções por Nematoides/veterinária , Prevalência , Ovinos , Doenças dos Ovinos/parasitologia , Tubulina (Proteína)/genética , Reino Unido
8.
Trends Parasitol ; 33(9): 669-677, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28647171

RESUMO

Parasitic roundworm infections are ubiquitous in grazing livestock. Chemical control through the frequent 'blanket' administration of anthelmintics (wormers) has been, and remains, the cornerstone in controlling these infections, but this practice is unsustainable. Alternative strategies are available but, even with the plethora of best practice advice available, have yet to be integrated into routine farming practice. This is probably due to a range of factors, including contradictory advice from different sources, changes to advice following increased scientific understanding, and top-down knowledge exchange patterns. In this article, we discuss the worm control options available, the translation of new best practice advice from science bench to field, and ideas for future work and directions.


Assuntos
Criação de Animais Domésticos/normas , Infecções por Nematoides/prevenção & controle , Infecções por Nematoides/veterinária , Animais , Anti-Helmínticos/uso terapêutico , Gado , Infecções por Nematoides/tratamento farmacológico , Pesquisa/tendências
9.
Environ Res ; 151: 130-144, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27475053

RESUMO

Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change.


Assuntos
Mudança Climática , Gado , Modelos Teóricos , Criação de Animais Domésticos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...